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Abstract. We discuss the normalisation condltions of the Hilbert-Riemann problem which 
is of importance for the construction of the ladder of soliton solutions. For a given spectral 
problem we provide the prescription for constructing the appropriate normalisation condi- 
tion. All this is applied to a new hierarchy of coupled Korteweg-de Vries equations to 
find the soliton solution which displays some peculiar phenomena. 

1. Introduction 

A few years ago Zakharov and Shabat (1980) reduced the integration of solvable 
nonlinear equations of interest in mathematical physics to the solution of a matrix 
Hilbert-Riemann problem. Most of the early literature (Zakharov and Mikhailov 
1978, Zakharov and Manakov 1979, Manakov et a1 1980) on this technique of solving 
nonlinear equations (sometimes called ‘the dressing method’ (DM)) considered non- 
linear evolution equations (NEES) whose associated Hilbert-Riemann problem has the 
so-called canonical normalisation. This is the origin of the belief that the canonical 
normalisation is generally valid. On the other hand, the calculation of N-soliton 
solutions by the DM fails unless proper normalisation is applied. 

For instance, in the well known case of the K d v  equation considered in the 
framework of the Zakharov-Shabat spectral problem (Ablowitz et ai 1974) one 
encounters the necessity for non-canonical normalisation. It turns out that by applying 
the canonical normalisation it is impossible even to generate a one-soliton solution 
from the bare solution. 

For a given linear problem the proper normalisation condition is provided by the 
matrix D1 introduced by Levi et af (1982). In principle the normalisation matrix 
DI can depend, through the soliton fields, on the independent variables x and t. 
Under some reasonable conditions, as will be shown later, the normalisation matrix 
can be gauge reduced$ to some constant matrix. But the further reduction to the 
identity matrix (i.e. to canonical normalisation) is generally impossible. In the above 
mentioned example of KdV, D1 is equal to the third Pauli matrix u3. 

t Work done under the exchange program between Warsaw University and Rome University ‘La Sapienza’. 
.t We are grateful to A V Mikhailov for pointing out the possibility of using gauge transforms in this context. 

@ 1983 The Institute of Physics 2423 
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All these statements prove to be useful for finding soliton solutions in the interesting 
case of a hierarchy of coupled Kdv-like (CKdv) equations (Levi 1981) where the D1 
matrix depends on x and t .  This hierarchy has two important features: firstly the odd 
sub-hierarchy can be reduced to the ordinary K d v  hierarchy and secondly its third 
member resembles the celebrated Hirota-Satsuma system of equations (Hirota and 
Satsuma 1981, Dodd and Fordy 1982, Wilson 1982). 

In § 2 we briefly outline the DM (Zakharov and Shabat 1980) for the construction 
of soliton solutions and recall (Levi et a1 1982) the technique necessary to recover 
the normalisation condition of the Hilbert-Riemann problem. Then we formulate 
the conditions under which the normalisation matrix can be reduced to a constant 
matrix. In 0 3,  using the generalised Lax technique (Bruschi and Ragnisco 1980a), 
we rederive the cKdv hierarchy, which was previously obtained by the Wronskian 
technique. By the use of the generalised Lax technique we are also able to obtain 
the Darboux matrix which cannot be recovered by the Wronskian technique. Finally 
in Fi 4 we calculate the soliton solution. 

2. Dressing method and the normalisation of the Hilbert-Riemann problem 

The matrix Hilbert-Riemann problem may be formulated as follows (Zakharov and 
Shabat 1980): given a closed contour r on the compact complex A plane and an N x N 
matrix function G(A) defined on the contour r, we have to determine the following 
factorisation of the function G(A): 

where i,bl and GZ, N x N matrix functions of A ,  originally defined on r, are to be 
extended analytically respectively inside and outside the contour r. In this problem 
all the above matrices can depend on parameters, for instance, x and t .  For uniqueness 
of the solution it is necessary (but not sufficient) to assume the so-called normalisation 
condition, i.e. tJIZ(hO) = x, where A. is some fixed complex number and ,y is some fixed 
N x N matrix. The canonical normalisation corresponds to the choice A. = 00 and ,y = I. 

In the following we shall be exclusively concentrating on the particular Hilbert- 
Riemann problem defined by requiring that G = I  and both functions det $' and 
det G2 possess n zeros in their domain of analyticity. From (1) it follows that +b2 = 9;'. 
One can show that in this case the general solution of the Hilbert-Riemann problem 
can be cast into the form 

where A ', . . . , A,, and pl, . . . , p, are zeros of det $1 and det G2 respectively. Here Pi 
are A -independent N x N projection matrices, Pf = Pi, while xi are non-degenerate 
normalisation matrices i.e. x =,Y,,Y,,-~ . . . xl. Solution (2) of the Hilbert-Riemann 
problem can be used to generate new solutions of NE= of soliton type. 



Normalisation conditions of Hilbert-Reimann problem 2425 

The generic NEE equation can be written in the formt 

Ut-V,+[U, V]=O (4) 

*x = U*, $1 = v*, ( 5 )  

which is the compatibility condition for the linear problems 

where U, V are N x N matrix functions depending in a preassigned way on a set of 
soliton fields q ( x ,  t )  and on the complex parameter A ;  1/1 may be understood either 
as a complex N x N matrix depending on x, t, A or as a vector function of the same 
arguments; [ * ,  ‘ 1  means the ordinary commutator. Starting from a given solution of 
(4), ( 5 ) ,  i.e. U, V and 4, a new solution of ( 5 )  is defined by $ = I j l 2 l j l  where 42 is of 
the form (2), (3) and 4 is a solution to ( 5 )  with U, V replaced by 

fi = 4 2 ( - 4 1 , x  + W l ) ,  ? = 4 2 ( - 4 1 , x  + V4d. (6 )  

Thus fi, ? are a new solution to equation (4). The requirement that fi, ? have the 
same analytic structure as U, V implies the following equations for the projectorst 
Pi(x ,  t ) ,  ( j  = 1, . . . , n ) :  

k - 1  - 1  k - 1  

j = 1  j = l  
pax( n $ ? ’ ( A k ) )  [ - a x  -t u ( A k ) ]  

(I--pk)xk(? j = 1  4 Y ) b k ) )  [ - a x  + U ( p k ) ]  j = l  n $ Y ) ( F k ) X k l P k  =o,  

P k x k C f i ’  $ : “ ( A k ) )  [ - a t +  V ( A k ) ]  j = l  n $ : “ ( A k ) X k l ( I - P k ) = O ,  

$ : “ ( A k ) X k l ( l  -Pk)  = 0, 

-1 k - 1  

(7) 
-1  k - 1  

J = l  

Equations (7) determine completely the projection matrices Pj(x, t )  in their x and t 
dependence. 

Substitution into (6 )  of formulae (7) expanded via equations (2), (3) gives the 
explicit form of the new soliton fields 4(x, t )  coded in fi, in terms of the 
projection matrices Pi(x,  t ) :  

t Here and in the following the subscripts x and t mean the correspondin partial derivatives. 
$The product $:“ is understood as an ordered product $y’$y’. . . $:*-‘I and, as usual, if the 
superscript of the product is lower than the subscript of the product then the result of the product is rhe 
identity matrix I.  
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A similar formula for c can be obtained from (8) by the following substitutions: U 
and 0 go into V and c while the x derivative is replaced by the r derivative. Equation 
(8) is a generalisation of the formulae given by Levi er al (1980) for the case of 
non-canonical normalisation. 

The final computation of 0 needs also the knowledge of the normalisation matrices 
xi. This can be determined using the equivalence between the Darboux matrix approach 
and DM as applied for finding soliton solutions (Levi er a1 1982), namely 4y) is 
proportional to D(( ,  q, A )  =Do(( ,  q )  +ADl((, q )  with the proportionality factor being 
a scalar function of A.  As in the asymptotic region (A + C O )  D behaves like Dl($, q ) ,  
the matrix D 1  can be taken as the appropriate normalisation for the Hilbert-Riemann 
problem. By identifying q with the ( j  - 1)-soliton solution q'-l and 4' with the j-soliton 
solution q' we have 

&(X,  t )  =D1(q', q q .  

When the matrix D 1  is non-constant two possibilities can be taken into account: to 
determine 4' directly from the formula (8) or to find the appropriate A -independent 
gauge transformation necessary to transform the linear problems ( 5 )  to the linear 
problems with constant normalisation. It turns out that the second possibility is 
computationally simpler whenever the appropriate gauge transformation can be found 
from the knowledge of the Darboux matrix. To carry out this gauge transformation 
one should demand that the given D1 matrix be decomposable in the following way: 

Di(4,q)  =A-'(q'@A(q) (9) 

where A is an N x N invertible matrix function of its own arguments and fi is a 
constant matrix. If the decomposition (9) is fulfilled then by introducing in ( 5 )  the 
new wavefunction cp = A4, the new linear problems 

= (A,A-' + A U A - ' ) ~ ,  = (/ . ,A-'  + A V A - ' ) ~ ,  (10) 

have by compatibility the same NEES as (9, but with constant normalisation matrix 6. 
The existence of the decomposition (9) may be proved under the two following 

general conditions: 
(a) Dl(q, q )  is a constant matrix; 
(b) there exists the adding-two-soliton Darboux matrix, which is a second-order 

polynomial in A ; this is, in fact, equivalent to the existence of the hierarchy of Backlund 
transformations (Calogero and Degasperis 1977). 
From condition (b) and composition properties of the Darboux matrices it turns out 
that the product Dl(G, q)Dl(q,  90) is q independent. Therefore 
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3. Coupled K d v  equations 

3.1. The hierarchy of equations 

The hierarchy of coupled Korteweg-de Vries (cKdv)  equations together with its 
Backlund transformations (BTS) has been previously derived by Levi (1981) using the 
Wronskian technique. However, this technique is not able to provide the Darboux 
matrices corresponding to BTS which, as we saw in 3 2, are the necessary tool to obtain 
the soliton solution via the dressing methcd. To be able to provide the Darboux 
matrices we now construct again this hierarchy by using the generalised Lax technique 
(Bruschi and Ragnisco 1980a). To apply this technique one has to write down the 
original linear problem 

in Lax form. Equation (12) cannot be written directly in Lax form since there A 
multiplies a singular matrix. Therefore, understanding JI in formula (12) as a spinor 
with components cpl, c p 2 ,  we replace the matrix linear problem (12) by the following 
scalar linear problem: 

(0 

LVZ(X, t )  = cp~.~(x ,  t )  + r(x, t)cpz(x, t )  + I dx’ q b ’ ,  t)cpz(x’, t )  = A d x ,  t )  (13) 
x 

completed with the condition 

cpl,X(X, t )  = -4b ,  t)(Pz(x, t ) .  (14) 

Starting from (13) we look for a NEE written in Lax form, i.e. such that it can be put 
in the form 

L, = [L, MI. (15) 

Then the problem of finding a hierarchy of NEES for 4(x, t )  and r(x, t )  reduces to that 
of finding a sequence of such M operators that the time evolution of (q(x, t ) ,  r(x, t ) )  
can be cast in the Lax form (15). 

According to the algorithm given by Bruschi and Ragnisco (1980a), we assume 
the existence of an M operator, say M’, and look for a new operator M, say Mi+’, 
through the ansatz 

where F’ and G’ are scalars whose dependence on (4(x, t), r(x, t)) is to be determined 
by the requirement that if [L, M i ]  has the form 

W 

[L, M’lcpz = Vi (x, t )q2 + I dx’ V’, (x’, t)cpz(x’, t )  
x 

the same holds for [L, Mi+’], i.e. 
m 

[L, ~ j + ’ ] c p ~  = vT’ (x, r)Q2 + J dx’ vY’ (x’, t)cpZ(x’, t ) .  
x 



2428 D Levi, A Sym and S Wojciechowski 

These conditions determine F’ and GI: 
Lc 00 

F’ = dx’ V i  (x’, t ) - F o ,  G’ = -Ix dx‘ Vi  (x‘, t) 

(where F o  is an arbitrary constant) and provide us with the recursion operator which 
connects Vi+’ (x, t )  with Vi (x, t )  and V y ’  (x, t )  with V i  (x, t ) ,  i.e. 

where 

V { , x ( ~ ,  t )+r (x ,  r)Vi (x, t1-22; (x, t ) - r x ( x ,  t) dx’ Vi (x’, t )  I,“ 
-V~,x(~,t)+r(~,f)V~(~,f)+2q(~,t)V~(x,t)-qx(x,t) 

So any NEES belonging to this class can be written down as 

where f is an entire function of its arguments. 

write down the corresponding M operator which gives the second linear problem 
Together with the NEES associated with the spectral operator (13), we are able to 

Q2.1 = -MQ2. 

In fact, in correspondence with a given NEE of the hierarchy characterised by a given 
entire function f, we can obtain the corresponding M operator by taking into account 
that from (16) we have 

Mi+l= S(V:, V’,,M’,A)+Mo, 

S (  VI, Vi, MI, A )QZ 

3) 

= AM’(p,+ Vi (x, t ) q 2  + (1 dx’ V i  (x’, t ) ) ~ ~ , ~  + dx’ V’, (XI, t ) Q z ,  
X 

3.2. The hierarchy of Backlund transformations 

Let us consider two linear problems of type (13) corresponding to the soliton fields 
(q(x, t ) ,  r(x, t)) and (4(x, t ) ,  ?(x, t ) ) :  L(q, r ) q 2  = A q 2  and L(4,  ?)G2 = A&. We can now 
look into the general problem of finding the class of operators 9’, W’, and W ;  such 
that the following equation is fulfilled: 

a, 

[L(q‘, ?)9’--9’L(q, r)]402 = W ~ Q I + [  dx’ W’, (x’)q2(x’). (18) 
X 
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For W{ = W', = 0 the operator 9' is a Darboux operator, i.e. such that G2 = &q2.  

The functional relation (usually nonlinear) between the soliton fields (4,  r) and 
($, 3 given by W', = Wi = 0 is a BT. So the problem of constructing BTS is reduced 
to that of the construction of a set of operators 9', W(, W', which satisfy (18). 
Analogously as in § 3.1 (see also Bruschi and Ragnisco 1980b) we set 

E d ' + ' q 2  = i 9 j q 2 f  Fiq2,, + dx' Giq2,,, (19) Ip 
and by requiring that (18), which is valid for 9', be also true for 9'+', we get 

CI) 

F' = K ( x ) ( - F o + /  dx' W: (x')K-'(x')), G i = - C o - l x m d x r  W:(x') 
X 

where K(x) = exp {Ix" dx' [?(XI) - r(x')]}, Go,  Fo are arbitrary constants independent 
of W1 and W2, and 

Wi+l ( wi+l) = A( ;;) + ( ;;, + ( $) 
where 

m 

/ Wit, +%", -2W4 +(?- r )  1, dx' W4(x') \ 
m 

- (4 -q  + r , )  j, dx' W: (x')K'- '(x') 

-W&,, +rW: +2q'W: +(q ' -q )  
A( E;) = 

dx' Wi(x ' )  6 

So a generic BT can be written as 

where gl, g2 are entire functions of their arguments and the corresponding Darboux 
operator can be constructed starting from (19) by taking into account that 

9/+1= (W:, W:, a', A)+9'+G0, 
(Wi,  WL B', 

= A 5 ? ' q 2 +  W ' I q ~ + K ( x ) ( / ~ ~ d x '  W'I (x ' )K- ' (x ' ) )q~ ,~  
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3.3. Examples of NEEs and BTs 

In the following we list a few of the interesting NEES belonging to this class and the 
simplest non-trivial BT together with its associated Darboux operator and its matrix 
equivalent. 

From equation (17) for f (x )  = x we get 

We call system (20) a c K d v  system because, by the reduction r = 0, it reduces to the 
K d v  equation. The reduction r = 0 can be carried out for any even function f(x). In 
this case the operator LZ2, which transforms even elements into even elements of the 
hierarchy, is equal to the usual recurrence operator of the K d v  hierarchyt. 

By setting q =r, or q = O  we get, as a different reduction, the Burgers hierarchy 
(Levi et a1 1983). In fact, by an appropriate substitution, the linear problem (13) 
gives rise to the Cole-Hopf transformation. 

For the whole class of NEES the simplest BT is obtained with the choice gl(x) = x ,  
g2(x) = 1. Then the Darboux operator reads 

m 

%p2=-[FoK(x)+G0]cpz,,+Go A + i - r + / ,  dx'(4-q))qZ (21) 

and the corresponding BTS are 

m 

F°K(x)[q'(i-r)-Lj,]-Go q,+q'i-qr+(G-q) 1, dx'(4-q))  = O .  

Now by taking into account the condition (14) and linear problem (13), equation (21) 
can be cast in matrix form 

00 

GO 

( 
m 

Gol ,  dx ' (q ' -q )F°K(x) ( r ,+q)+Go 4-fx- ( i - r ) r - (? - r ) /x  dx ' (4-4) )  

Go + F°K(x )F°K (x )r + Go( r' + dx' (4 - q )) + A (  -F,,&x)) 

Thus the normalisation condition of the Hilbert-Riemann problem is given by 

I GO 0 \ 

i '  XJ = m 1 0 -Foexp(Ix dx~[rf(x')-rJ- ' (xf)])  

+ After this work had been completed we took notice of the article by Iino and Ichikawa (1982) where 
the same spectral problem has been associated with the KdV equation. 
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4. Soliton solution 

The C K d v  hierarchy, as we have seen at the end of Q 3, has non-constant normalisation 
condition for the Hilbert-Riemann problem. Therefore, to compute the soliton 
solution, we look for the gauge transformation of the linear problem (12) to the one 
with constant normalisation. 

Dl(q, q )  is constant, the conditions (a) and (b) are satisfied and the gauge transfor- 
mation certainly exists. Applying formula ( l l ) ,  we obtain 

Go 0 
D=( 0 -p) 

and 

From (10) the transformed linear problem takes the form 

where U = (Fo/Go)q exp(Jp dx’ r(x’)) and v = (Go/Fo) exp(-jr dx‘ r(x‘)). For sim- 
plicity of exposition we apply here the formulae (7) and (8) only to the case of n = 1. 
This solution, though being the simplest one, still shows some interesting properties. 
Then, starting from the ‘bare’ solution q = r = 0, the one-soliton solution of the linear 
problem (22) reads ( ,p l  tf)=(Al-P1)[P1.(o 0 0  1>1 
where P1 is a projection matrix, which can be constructed in the usual way (Levi et 
a1 1980). The explicit formula for the one-soliton fields has the form 

q(x, t )  = (A 1 - pi)A i ~ i  
[ A I  exp xlU+ exp x2) -PI  exp x2(1+ exp xdl 

[A 1 ( 1 +  exp XJ - P I U  + exp x1)12 9 

(23) 
r(x, ~ ) = ( A ~ - P ~ ) [ A :  e x p x 1 ( 1 + e x ~ x 2 ) ~ - P :  e x p x 2 ( 1 + e x p ~ ~ ) ~ 1  

x [A 1 exp x (1 + exp x 2 )  - P 1 exp x2( 1 + exp x 1)I- l  

x [A 1 (1 + exp x 2 )  - P 1( 1 + exp x 1)I-I 

where X I  =Al(x -f(hl)t-xlo), x2 = pl (x  -f(pl) t  -xzo) and the function f, introduced 
in (17), defines the particular system for which (23) is the one-soliton solution, while 
X I O  are arbitrary real constants. Moreover, the requirement that 4 and r should be 
real, everywhere finite, fields with zero asymptotic values implies that A 1  and p1 are 
to be real and of opposite signs. 

In figure 1 we plot the evolution of the one-soliton solution (23) for the CKdv 
system (20). From figure 1 we can see that 

(a) the q-field peaks maintain the K d v  one-soliton shape; however, the ‘one- 
soliton’ peak coming from --oo splits into two ‘one-soliton’ peakst; 

+ Both q and r fields conserve their area during the evolution. 
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. -  I 

Figure 1. The one-soliton solution of CKdV (20) for A ,  = 2, w l  = -1.4, x I o = x z o =  0; q is 
depicted by a continuous line, while r is dot1 :d. 

(b) the r field is built up from three kink-like objects; the evolution transforms 
the past configuration, two ‘kink’ + one ‘antikink’, to the configuration one ‘kink’ + 
two ‘antikink’. 
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